※本稿は、中野信子『新版 科学がつきとめた「運のいい人」』(サンマーク出版)の一部を再編集したものです。
運のいい人は、品もいい
常日ごろ、品のある行動を心がけること――。これが「ここぞ」という勝負のときに効いてくる場合があります。
たとえばドアの開け閉めを静かに行う。
お店で支払いをするとき、ていねいにお金を扱う。
やむをえず車のクラクションを鳴らすとき、何度もしつこく押さないようにする。
親しい人にもていねいな言葉遣いで話す。
このような、日常生活のあらゆる所作に品があるかどうかを意識するのです。というのは、品のある行動がよい結果を生む場合が少なくないからです。
それを証明したのが、ゲーム理論の「しっぺ返し戦略」です。
ゲーム理論とは、価格競争や交渉など、複数の当事者(意思決定者)が参加する状況(ゲーム)で、各当事者は自分の利益や効用を得るためにどのような行動をとるのか、またはとるべきかを数理的に分析したもの。20世紀半ばに数学者のフォン・ノイマンと経済学者のオスカー・モルゲンシュテルンが基礎をつくりました。
現在では、政策決定やビジネスの現場で、ベストな選択を行うための指針を導き出すために応用されるなどしています。
大きな利益を得るためにはバランスが大切
たとえば商品を仕入れるA社と商品を納入するB社が価格交渉を行ったとしましょう。基本は、A社はできるだけ安く仕入れたいと考え、B社はできるだけ高く納入したいと考えます。一回限りの取引なら、A社は最低価格をB社は最高価格を狙うでしょう。
しかし今後の取引のことを考えると、それは得策ではありません。A社とB社の関係や状況をふまえ、お互いが利益を追求するもっともバランスのよい価格、というのがあるはずで、ゲーム理論ではこれを数式で導き出すのです。
このゲーム理論の中にしっぺ返し戦略というものがあります。
しっぺ返し戦略は、ゲームを行う際に「基本は相手と協調路線をとり、相手が裏切ったときには裏切り返す、しかし相手が協調に戻ったらすぐに協調する」という方法で戦うともっともお互いの利益が大きくなる、というもの。
たとえばふたりの人が、ジャンケンで点数争いをするとしましょう。
ただし出せるのはグーとパーのみ。自分と相手が出すグーとパーの組み合わせによって、次のように得られる得点(カッコ内)が決まっているとします。
【パターン1】グー(2) 対 グー(2)
【パターン2】グー(0) 対 パー(3)
【パターン3】パー(3) 対 グー(0)
【パターン4】パー(1) 対 パー(1)