たとえば、「1+2+4+8+……」は「初項1」「公比2」の無限等比級数だが、その値は無限に発散する。それに対して「初項1/2」「公比1/2」の無限等比級数「1/2+1/4+1/8+1/16……」は「1」に限りなく近づく。これを「収束」と呼ぶ。そして公比が「-1」と「1」の間にあるとき、無限等比級数は収束することが証明されていて、その値は「(1-公比)分の初項」となる。

したがって、問題の無限等比級数は公比が「1/10」なので収束し、その値「(1-1/10)分の0.9」、すなわち「0.9/0.9=1」となる。そもそも「0.33333……」自体、「初項0.3」「公比1/10」の無限等比級数で、同様に計算すると「1/3」に収束することがわかる。

石には粉

もう1つ、せっかくなのでおもしろい循環小数をご紹介しよう。「1/7=1÷7=0.142857142857……」は、「142857」が繰り返される。この「142857」は不思議な数で、私は「142857=いしにはこな(石には粉)」と覚えている。

この数に「1、2、3…」とかけてみる。「142857×1=142857」「142857×2=285714」「142857×3=428571」「142857×4=571428」「142857×5=714285」「142857×6=857142」。何かに気づかないだろうか。

答えの6ケタの数が、元の数「142857」の順に「1→4→2→8→5→7」とグルグルと回って並んでいる。「142857」のように、その各桁の数を順序を崩さずに巡回させた数になる整数は「巡回数」「ダイヤル数」と呼ばれる。ちなみに「142857」に「7」をかけると、「142857×7=999999」と突然変化する。本当に不思議な数である。

循環小数の風景は実に興味深い。友人たちとの酒席で話のネタにこまったときには、先の「石には粉」の呪文を思い出して、不思議なダイヤル数があることを紹介してみてはいかがだろう。

(構成=田之上 信)
【関連記事】
なぜ、一流は「数」と「数字」に差にこだわるのか
「宝くじ1等6億円」確実に当選する方法
「夏休みに勉強した子」が秋に成績を落とすワケ
欧米で老後2000万不足が起こらない理由
「100円ペン5本」が400円で儲かる原価の仕組み