摩訶不思議!「循環小数」の世界
「循環小数」というのをご存じだろうか。分数は、計算したときに小数点以下のケタが循環する小数と、循環しない小数のどちらかになる。そして、前者が循環小数と呼ばれる。たとえば「1/6=1÷6=0.166666……」「1/9=1÷9=0.111111……」「1/11=1÷11=0.090909……」などが循環小数である。
私は全国各地で講演を行っている。そして、小学校・中学校・高等学校の講演後の質疑応答で、「『1/3=0.33333……』。この両辺を3倍すると『1=0.99999…』となりますが、これはどういうことなのでしょうか」という質問をよく受ける。
まず「0.99999……」について考えてみると、「0.9+0.09+0.009+0.0009……」と表せる。そして「0.9」「0.09」「0.009」「0.0009」は、初めの「0.9」に「1/10」をかけ続けてできる。これを「初項0.9」「公比1/10」の「等比数列」と呼び、等比数列を無限に足したものを「無限等比級数」と呼ぶ。