また、これは複数の研究で報告されていることですが、生成AIを使うことにより、労働者間のスキルの不平等が減少したという事実があります。

つまり、すでに高いスキルを持っている労働者への影響は最低限で、新人労働者などに対して最も大きな影響を与えたということです。多くの場合、スキルが低い労働者が、スキルの高い人と同等のアウトプットができるようになるとされています。

1回きりの実験ではわからないこともある

ただし、これらの研究の見方には注意が必要です。 

まず、これらの研究は長期的な雇用への影響については考慮していません。企業や労働者が生成AIを採用することで、労働市場には長期にわたって大きな変動があることが予想されますが、それは実験室での1回きりの実験で測ることはできません。

需要の大きな伸びが期待される分野であれば、生成AIによる生産性の向上がそのまま市場の拡大につながります。労働者が以前より高い生産性を得ることにより、以前には対応しきれなかった潜在的な顧客に対するサービス提供が可能となります。その結果、当該分野の雇用は増加することになります。

一方、需要がすでに頭打ちだった場合は、生成AIを使うことで一人ひとりの労働者が対応できる量が増加するため、必要な労働者の量が減り、雇用の減少につながる恐れがあります。

こうした外部的な要因が、とある技術が労働に与える影響を分析するうえで難しいところです。これらは本質的に長期にわたる検証が必要な問題であり、いくら生成AIを使った短期的な実験を行っても、結論を出すのは困難です。

おそらく今後も、生成AIと労働に関する実験は多く出てくるでしょうが、そこでいくら生産性の向上などが強調されていても、雇用や賃金などは外部要因によって決定されることを理解しておく必要があります。

すでに生成AI導入が進む「カスタマーサービス」分野

ここからは、生成AIが特に利用されるであろう個別分野におけるユースケースについて考察していきます。生成AIの現場への導入はまだ始まったばかりで、業務のどの部分に組み込むかはまだ手探り状態ですし、長期的に良い影響があるかは不透明です。

ただ、カスタマーサービスとソフトウェア開発の2分野に関しては、生成AIブーム以前に、分野固有の事情から生成AIの導入が比較的進んでいたという特徴があり、その影響についても長期的な視点での報告があります。

カスタマーサービスは、現時点で生成AIが最も威力を発揮するとされている分野です。生成AIの流行以前から、この機能に特化したAIを導入して顧客対応を行っていた企業が多く存在したという調査結果もありますし、長期の影響を分析した詳細な研究結果も報告されています。